Harvest Schedule under Price Endogeneity: Linking Field Operations to Market Decisions

Bruno Kanieski da Silva¹ Frederick W. Cubbage¹ Robert C. Abt¹ Karen L. Abt²

¹North Carolina State University (NCSU), Raleigh, USA ²US Forest Service, Southern Research Station, USA.

1

"I think it's wrong that only one company makes the game Monopoly"

Steven Wright

Introduction

- Harvest schedule modeling has advanced at a fast pace over the last 30 years
 - "There is nothing we could not model, we just need a good data" Dr. Roise
- Optimal allocation of resources:
 - Maximize Net Present Value (NPV) subject to a set of constraints
- Timber prices are normally exogenous
 - Competitive market? All the time?

Introduction

- Timber Markets are commonly dominated by few mills (Oligopsony power)
 - US South (Mei et al 2008, Silva et al 2019)
 - Scandinavia (Bergman and Branlunnd 1995)

Timber Markets:

Market Structure

Modeling

$$\max \pi_{im} = \sum_{t}^{T} (q_{itm} P_{tm} (Q_{tm}^{s}) - C_{itm}) \delta_{t}$$

$$st$$

$$Z = A$$

$$P_{tm} = \beta Q_{tm}^{s} + \alpha I_{tm}$$

$$Q_{tm}^{s} = Q_{tm}^{d}$$

$$where$$

$$Q_{tm}^{s} = q_{itm}^{s} + W_{tm}^{s}$$

$$I_{tm} = inv_{itm} + Inv_{tm}$$

$$Q_{tm}^{d}: \text{Exogenous demand}$$

- P_{tm} : Timber Prices at market *m* during *t*
- Q^{s(d)}_{tm}: Quantity Supplied (Demanded)

 q^s_{it}: Quantity Supplied by firm i
 W^s_{tm}: Quantity Supplied by "market"
- *C_{itm}*: Costs of firm *i*
- Z and A: Operational Constraints
- *I_{tm}*: Total inventory at period *t*.
 Inv_{itm}: Inventory at firm *i Inv_{tm}*: "market" inventory
- α and β : Price elasticities.

Dataset

Simulation

- Stand Characteristics
 - Plot level Forest Inventory and Analysis (FIA) - Sampling
 - $\circ~$ Cost from consulting firms
 - Yield Tables Forest Vegetation
 Simulator
- Market Characteristics
 - SubRegional Timber Supply (SRTS)
 - Timber Product Output (TPO) Demand

NC STATE UNIVERSITY

Simulation

NC

Monopoly

Perfect Competition

Results (Monopoly)

Results

Structure	Difference (Comp - Monopoly)
Price	- 14.5%
Harvesting	-12.5%
Stock	+10.5%

Take home message

- Assuming perfect competition in the timber market is never true; it will have some degree of oligopsony or oligopoly in any place in the world
- In a monopoly, prices will be higher and quantity will be less than in a perfect competitive market
- Initial investments and regulations might affect the entry of new timberland investors

Next Steps

- To use real timberland asset Hoffman Forest (North Carolina)
- To add Game theory concepts, Nash Equilibrium, into harvest schedule models
- To build a friendly interface

Thank you

bkanies2@ncsu.edu