20th Conference of the International Federation of Operational Research Societes, Barcelona 13th – 18th July 2014

Production possibility frontiers for energy wood, timber production and biological diversity in North Karelia, Finland

Mikko Kurttila Leena Kärkkäinen Olli Salminen Finnish Forest Research Institute

Contents

- Renewable energy from forests
- Settings for simulation and optimization
- The frontiers
- Conclusions

Based on: Kärkkäinen, L., Kurttila, M. Salminen, O. & Viiri, H. 2014. Effects of Energy Wood Harvesting on Timber Production Potential and Biological Diversity in North Karelia, Finland. Forest Science. In press.

EU renewable energy shares for the years 2005 and 2009 and targets for 2020 (REN21 2014)

Finland has targets for forest chips

- Use in 2011 was 7.5 Mill. m³
- Target for 2020 set to 13.5 Mill. m³
 - Could be even larger if the use in biorefineries will increase
 - In North Karelia study area, the figures were 0.85 Mill m³ and 1.4 Mill m³, respectively (including firewood)
- Forest chips burned in heat and power plants year 2011 came from:
 - Small diameter trees 45 %
 - Cutting residues 33 %
 - Large low quality timber 8 %
 - Stumps and roots 14 %
- → Largely side product from traditional forestry

7/28/2014

Our objective: to study the effects on other forest uses

 If forest resources are used efficiently, increased use of bioenergy will have effects on other forest uses

Research questions:

- 1. Is the current use efficient?
- 2. What kind of relationship energy wood production has with timber production and biodiversity?

Approach: creation of two dimensional production possibility frontiers with large-scale forest planning system

Energy wood removal

Materials

- 1.4 million ha of forest and scrubland
 - Scots pine (*Pinus sylvestris*) 52%; Norway spruce (*Picea abies*), 28% birches and other deciduous trees 20%
 - Forests less than 40 years cover appr. 45%
- National forest inventory data 2006-2010 were used in calculations
 - 5061 management units (clusters of 3-6 sample plots)
 - Total of 1.065 mill. management schedules (on average 210 / unit)

c National Land Survey of Finland MML/VIR/MYY/328/08

Methods

Methods II: simulation rules for energy wood harvesting in MELA

	Thinning stands	Clear cutting areas
Site	Mineral soils: subdry and more fertile sites ¹	Mineral soils: subdry and more fertile sites ¹
	Organic soils: subdry and more fertile sites	
Components of a tree	Stems: Norway spruce-dominated stands' and stands of organic soils ²	Logging residues (branches, foliage, and stemwood
	Stems and branches (and foliage): mineral soils except spruce dominated stands ¹	waste) or logging residues and stumps and roots ¹
Method	Removal of all felled trees ¹	
	Removal a portion of felled trees (integrated logging) ¹	
Size	Minimum dbh: 4 cm ³	Minimum diameter of stumps lifted: 25 cm ²
	Maximum dbh: 10 cm in integrated logging for Scots pine, Norway	
	spruce, birch, and aspen ⁴	
	No maximum diameter in integrated logging for other tree species ⁴	
Minimum amount harvested	$15 \text{ m}^3 \text{ ha}^{-12}$	$15 \text{ m}^3 \text{ ha}^{-12}$
Amount left in the stand	Only stems harvested for energy wood: tops <3 cm, branches	Branches (and foliage): 30%
	(and foliage)	Stumps: 10% of stumps, which diameter was \geq 25 cm ²

¹ Data from Äijälä et al. (2010).

² Juha Laitila, Finnish Forest Research Institute, pers. comm., May 2, 2012. According to Laitila, the minimum amount harvested could be 25 m³ ha⁻¹ in clearcutting areas, but in the MELA system, a minimum could not be set based on the cutting type.

³ Data from Laitila et. al. (2004).

⁴ Compare Hyvän metsänhoidon suositukset 2006.

LP problem formulations

or

$$\max \text{ (or min)} \sum_{i=1}^{m} \sum_{j=1}^{h} \sum_{t=1}^{T} w_{ijt}^{Q} x_{ij}$$
(1)

1: maximize (or minimize) the objective variable value

$$\max \text{NPV} = \sum_{i=1}^{m} \frac{\sum_{j=1}^{h} \sum_{i=1}^{T} \left(\sum_{q=1}^{k} (p_q - c_q) w_{ijt}^q x_{ij} \right) (1+r)^{T-t} + \text{SEV}_i}{(1+r)^T}$$
(2)

subject to

or

$$\sum_{i=1}^{m} \sum_{j=1}^{h} w_{ijt}^{Q} x_{ij} - \sum_{i=1}^{m} \sum_{j=1}^{h} w_{ijt-1}^{Q} x_{ij} = 0, \ \forall t = 1, ..., T$$
(3)

$$\sum_{i=1}^{m} \sum_{j=1}^{h} w_{ijt}^{e} x_{ij} = E_{t}, \ \forall \ t = 1, \ \dots, \ T, \ e \notin Q$$

$$\sum_{j=1}^{h} x_{ij} = a_i, \ \boldsymbol{\varpi} \ \forall \ i = 1, \ \dots, \ m$$

$$x_{ij} \ge 0, \ \boldsymbol{\varpi} \ \forall \ i = 1 \ \dots, \ m, \ \forall \ j = 1, \ \dots, \ h$$

(4) 4: s.t. demanded even flow of energy wood from each period

2: maximize soil expectation value (SEV,4%)

- (5) 5: s.t. management unit area constraints
- (6) 6: s.t. positivity constraints

Results – timber production

- - - small trees from thinnings

small trees from thinnings + logging residues + stumps/roots

7/28/2014

Sensitivity analysis – energy wood prices and interest rate

Price -25 % (no subsidies)

Analysis and discussion

- With given prices and interest rate, optimal production exceeds the set target level
 - At low levels no effects on saw log production
 - Rather linear marginal substitution rate with pulpwood
- Variables that were used to describe effects on biodiversity were affected heavily but only at high levels of energy wood harvesting
 - Logical explanations
 - The best indicators for biodiversity were missing, e.g.
 existence of large diameter deadwood in fertile forests

Answers to research questions

- 1. Technically the current forest use is not at the efficient frontier
 - Simplified problem formulations that addressed only two variables at a time
 - Individual forest owners make their own decisions
 - In our calculations forest ownership structure was not considered
- Energy wood production has mainly competitive relationship with timber production and biodiversity
 - However, without timber production it is impossible to reach the set targets of energy wood

Acknowledgements

The study was made in the COOL (Competing uses of forestland) project, which belongs to the WoodWisdom-Net Research Programme, with Finnish national funding from the Ministry of Agriculture and Forestry.

Metsämiesten säätiö (foundation) for providing funding to BioE-BioD project.

Juha Laitila and Jouni Hyvärinen (photos)

KNOWLEDGE Well-being Know-how

Thank you

Acknowledgements

The study was made in the COOL (Competing uses of forestland) project, which belongs to the WoodWisdom-Net Research Programme, with Finnish national funding from the Ministry of Agriculture and Forestry.

Metsämiesten säätiö (foundation) for providing funding to BioE-BioD project.

Juha Laitila and Jouni Hyvärinen (photos)

Thanks!