

UNIVERSITÀ DEGLI STUDI DI BRESCIA

A Model for Optimal Crop Selection Based on Conditional Value-at-risk

Carlo FILIPPI[†], Renata MANSINI[‡] Elisa STEVANATO[†]

(†) Department of Economics and Management, University of Brescia
 (‡) Department of Information Engineering

IFORS 2014, BARCELONA 13-18 JULY, 2014

Introduction

Location and Crop Problem definition Literature

EV-MILP model

Data and Variable Constraints CSP

CVaR-MILP model

 $ext{CVaR} \\ ext{CSP}(eta)$

Case study Description Results

Conclusions

Introduction

- Problem definition
- Expected value approach
 - A first MILP model
- Conditional Value-at-Risk approach
 - A second MILP model
- Discussion of a real case
- Conclusions and future work

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variable Constraints CSP

CVaR-MILP model

CVaR $CSP(\beta$

Case study Description

Results

Conclusions

Rural area in Northern Italy

Filippi, Mansini, Stevanato

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variable Constraints CSP

CVaR-MILP model

 $CSP(\beta)$

Case study Description Results

Conclusions

Rural area in Northern Italy

Problem definition First part

Outline

Introduction

Location and Crops Problem definition

Literature

EV-MILP model

Data and Variable Constraints CSP

CVaR-MILP model

CVaR CSP(*β*

Case study Description Results

Conclusions

- Each crop requires a fixed sequence of operations
 ploughing, seeding, etc.
- Each operation requires a specific tool type
 - ploughing requires a plough
 - working speed and/or operation cost may vary inside the same type and among crops
- Tools are mounted on a tractor machine
 - identical machines
 - limited number available

Problem definition Second part

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model Data and Variables

CSP

CVaR-MILP model CVaR

Case study Description Results

Conclusions

- Every operation of every crop has a **time window**
- In a given time slot different operations for different crops can be performed simultaneously, provided that:
 - the required tools and tractors are available
 - the time slot belongs to the appropriate time window
- General task: Optimal selection of crops and optimal assignment over time of their operations so to meet time windows and resource constraints, maximizing the expected profit

Literature review

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variable Constraints CSP

CVaR-MILP model

CVaR $CSP(\beta)$

Case study Description Results

Conclusions

Surveys on models to support cropping plan

- Glen, 1987): mathematical models in farm planning
- (Dury et al., 2012): models to support cropping plan and crop rotation

Papers most related to our work

- (Maruyama, 1972): stochastic LP for yield and price uncertainty
- (Danok, McCarl, White, 1980): MILP for machinery selection and crop planning
- (Annets and Audsley, 2002): MOLP for farm planning

EV-MILP model

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variables Constraints CSP

CVaR-MILP model _{CVaR}

CSP(B)

Case study Description Results

Conclusions

- m number of crops
- number of tool types
- A crop *i* is characterized by the ordered sequence of *q_i* operations:

 $j[i, 1], j[i, 2], \ldots, j[i, q_i],$

where j[i, k] is the index of the tool type needed to perform the *k*-th operation of crop *i*

A binary index vector:

 $a_{i,j,k} = \begin{cases} 1, & \text{if } j \text{ is the } k \text{-th operation in crop } i; \\ 0, & \text{otherwise.} \end{cases}$

EV-MILP model Parameters

Outline

Introduction

Location and Crops Problem definition Literature

- EV-MILP model
- Data and Variables Constraints
- CVaR-MILP model _{CVaR}
- Case study Description Results
- Conclusions

- **[** $s_{i,k}, f_{i,k}$] time window for the *k*-th operation of crop *i*
- **[** $[0, T] = [\min_i \{s_{i,1}\}, \max_i \{f_{i,q_i}\}]$ time horizon
- *r*_i expected revenue for one hectare cultivated with crop *i* Obtained from historical data on prices and yields
- *h_{i,k,ℓ}* number of hectares that can be worked out in a time unit performing the *k*-th operation on crop *i*, using the ℓ-th tool of type *j*[*i*, *k*]
- c_{i,k,ℓ} time unit cost of using the ℓ-th tool of type j[i, k] on the k-th operation of crop i
- w number of (identical) tractor machines
- *H* total number of hectares available for cultivation
- u_j number of tools of type j

- Introduction
- Location and Crops Problem definition Literature

EV-MILP model

Data and Variables Constraints CSP

CVaR-MILP model

CVaR $CSP(\beta)$

Case study Description Results

Conclusions

I(j, t) subset of crop indices requiring a tool of type j that may be active at time t

 $I(j, t) = \{i : j = j[i, k], t \in [s_{i,k}, f_{i,k}] \text{ for some } k\}$

Binary variables:

	(1,	if compatible machine ℓ is assigned			
$\mathbf{y}_{i,k,\ell,t} = \mathbf{y}_{i,k,\ell,t}$	{	to the k -th operation of crop i at time t ;			
		otherwise.			

Flow variables:

 $z_{i,k,\ell}$ = number of hectares where the *k*-th operation of crop *i* is worked out using tool ℓ

EV-MILP model Constraint 1 and Constraint 2

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variables Constraints CSP

CVaR-MILP model CVaR CSP(B)

Case study Description Besults

Conclusions

Constraint 1: budget constraint on the total area that can be farmed

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j,1} \sum_{\ell=1}^{u_j} z_{i,1,\ell} \le H$$

Constraint 2: the hectares worked out by a given crop must be the same for every operation on that crop

$$\sum_{j=1}^{n} a_{i,j,k-1} \sum_{\ell=1}^{u_j} z_{i,k-1,\ell} - \sum_{j=1}^{n} a_{i,j,k} \sum_{\ell=1}^{u_j} z_{i,k,\ell} = 0$$

for all i = 1, ..., m and $k = 2, ..., q_i$

Filippi, Mansini, Stevanato

EV-MILP model Constraint 3 and Constraint 4

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variables Constraints CSP

CVaR-MILP model CVaR CSP(β)

Case study Description Results

Conclusions

Constraint 3: at any time unit *t* every single tool can be assigned to at most one operation on some crop

$$\sum_{i \in I(j,t)} \sum_{k=1}^{q_i} a_{i,j,k} y_{i,k,\ell,t} \leq 1$$

or all
$$j = 1, ..., n; \ell = 1, ..., u_j; t \in [0, T]$$

Constraint 4: the number of tool-tractor pairs active at any time must not be greater than *w*

$$\sum_{j=1}^{n} \sum_{i \in l(j,t)} \sum_{\ell=1}^{u_j} \sum_{k=1}^{q_i} a_{i,j,k} \, y_{i,k,\ell,t} \leq w$$

for all $t \in [0, T]$

EV-MILP model Constraints 5-6 and 7-8

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variables Constraints CSP

CVaR-MILP model CVaR CSP(β)

Case study Description Besults

Conclusions

Constraints 5 and 6: a necessary and sufficient quantity of resources must be allocated to every operation of every crop

$$\sum_{j=1}^{n} a_{i,j,k} h_{i,j,\ell} \left(\sum_{t=s_{i,k}}^{f_{i,k}} y_{i,k,\ell,t} - 1 \right) \le z_{i,k,\ell} \le \sum_{j=1}^{n} a_{i,j,k} h_{i,j,\ell} \sum_{t=s_{i,k}}^{f_{i,k}} y_{i,k,\ell,t}$$

for all
$$i = 1, ..., m$$
; $k = 1, ..., q_i$; $\ell = 1, ..., u_{j[i,k]}$

Constraint 7 and 8: nonnegativity and binary restriction

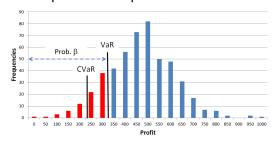
 $z_{i,k,\ell} \ge 0$ and $y_{i,k,\ell,t} \in \{0,1\}$

for all i, k, ℓ , and t

Introduction

- Location and Crops Problem definition Literature
- EV-MILP model
- Data and Variable Constraints
- CVaR-MILP model CVaR
- Case study Description Results
- Conclusions

Objective: difference between expected revenues and (certain) costs


$$\sum_{i=1}^{m} \left(\overline{r}_{i} \sum_{j=1}^{n} a_{i,j,1} \sum_{\ell=1}^{u_{j}} z_{i,1,\ell} - \sum_{k=1}^{q_{i}} \sum_{j=1}^{n} a_{i,j,k} \sum_{\ell=1}^{u_{j}} c_{i,j,\ell} \sum_{t=s_{i,k}}^{t_{i,k}} y_{i,k,\ell,t} \right)$$

- CSP Crop Selection Problem
 - Maximise the above Objective subject to Constraints 1-8

- Introduction
- Location and Crops Problem definition Literature
- EV-MILP model
- Data and Variable Constraints CSP
- CVaR-MILP model CVaR
- Case study Description Besults
- Conclusions

- In model CSP, profit p(x, r) is a function of our decision
 (x) and uncertain prices (r)
- **Value-at-Risk** (VaR): $Prob\{p \le VaR\} = \beta$ (for a fixed β)
- Conditional Value-at-Risk (CVaR): Conditional expectation of profits lower than VaR

 CVaR is a coherent risk measure with several nice properties (Pflug, 2000)

CVaR-MILP model Maximizing CVaR

Outline

Introduction

- Location and Crops Problem definition Literature
- EV-MILP model
- Data and Variable Constraints CSP

CVaR-MILP model

 $\text{CSP}(\beta)$

Case study Description Results

Conclusions

- For a given value of β, we pursue risk minimization through CVaR maximization
- Given *S* scenarios, this can be done (approximately) through the following model (Rockafellar and Uryasev, 2000):

$$\begin{array}{l} \max \, \eta - \frac{1}{\beta} \sum_{s=1}^{S} \pi_{s} d_{s} \\ \text{subject to } \eta - p(\mathbf{x}, \mathbf{r}_{s}) \leq d_{s} \quad (s = 1, \cdots, S) \\ d_{s} \geq 0 \; (s = 1, \cdots, S), \mathbf{x} \in X \end{array}$$

where:

- **r**_s is the s-th possible price realization (scenario);
 π_s is its probability
- X is the set of feasible crop assignments

CVaR-MILP model

Outline

Introduction

Location and Crop Problem definition Literature

EV-MILP model

Data and Variable Constraints CSP

CVaR-MILP model CVaR CSP(B)

Case study Description Results

Conclusions

r_{i,s} revenue of crop *i* under scenario *s π_s* = 1/*S* for all scenarios CSP(β):

$$\begin{array}{ll} \max & \eta - \frac{1}{\beta S} \sum_{s=1}^{S} d_{s} \\ \text{subject to} & \eta - \sum_{i=1}^{m} \left(r_{i,s} \sum_{j=1}^{n} a_{i,j,1} \sum_{\ell=1}^{u_{j}} z_{i,1,\ell} \\ & - \sum_{k=1}^{q_{i}} \sum_{j=1}^{n} a_{i,j,k} \sum_{\ell=1}^{u_{j}} c_{i,j,\ell} \sum_{t=s_{i,k}}^{f_{i,k}} y_{i,k,\ell,t} \right) \leq d_{s} \\ & (s = 1, \dots, S) \\ & d_{s} \geq 0 \quad (s = 1, \dots, S) \end{array}$$

+ CSP constraints

Filippi, Mansini, Stevanato

Data

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variables Constraints CSP

CVaR-MILP model _{CVaR}

CSP(B)

Case study Description Results

Conclusions

- H = 100 hectares; m = 4 crops
- w = 4 tractors
- n = 9 ops./tool types; $|u_j| = 2$ for all j
 - Operating costs and working speeds
 - Source: Farmer
- Prices: monthly prices from 2000 to 2009
 - Source: ISMEA
- Yield per hectare: yearly averages from 2000 to 2009
 - Source: www.istat.it
 - Each average yield perturbed 5 times according to a Beta distribution
- A total of 120 × 5 = 600 scenarios

Implementation

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variable Constraints CSP

CVaR-MILP model

CVaR $CSP(\beta)$

Case study Description

Conclusions

- Models implemented using IBM ILOG CPLEX Optimization Studio 12.5
 - CPLEX solver used the default settings
- Code run on an Intel Core i5 2.70GHz, 4MB RAM processor with 64 bit Windows 7 Pro
- Model size and Computational times
 - **CSP** model: 4092 rows and 809 columns
 - reduced to 349 rows and 618 columns
 - solved to optimality in less than 1 sec. of total time
 - **CSP(** β **)** with β = 0.05, 0.01: 4693 rows and 1410 columns
 - reduced to 950 rows and 1219 columns
 - best integer solution found in the first 10 seconds and then stalling with a gap steadily around 0.10%

0%

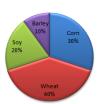
Outline

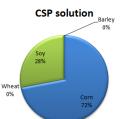
Introduction

Location and Crops Problem definition Literature

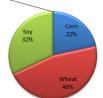
EV-MILP model

Data and Variable Constraints CSP

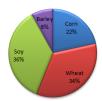

CVaR-MILP model


CVaR CSP(β

Case study Description Results


Conclusions

Farmer's solution



CSP(0.05) solution

CSP(0.01) solution

Filippi, Mansini, Stevanato

Statistics

Outline

Initial budget: 15000 euro

ı		÷		~	Ы	 ~	41	~	n	
	L	ι	E	υ	u	G		U		

Location and Crops
Problem definition
Literature

EV-MILP model

Data and Variables Constraints CSP

CVaR-MILP model

CVaR $CSP(\beta)$

Case study

Description

Results

Conclusions

		CSP		
Statistics	Farmer's sol.	Value	Variation	
Ave. Profit	101 124.87	124 628.50	23%	
Cost	8090.00	13223.50	63%	
Cash surplus	6910.00	1776.50		
Ave. Profit + Cash	108034.87	126405.00	17%	
Max Profit	235 712.82	289 832.27	23%	
Min Profit	48 559.39	37 149.23	-23%	
Variance	1.0449E+09	2.2801E+09	118%	
		CSP(0	.05)	
Statistics		Value	Variation	
Ave. Profit		99 921.02	-1%	
Cost		6154.50	-24%	
Cash surplus		8845.50		
Ave. Profit + Cash		108766.52	1%	
Max Profit		209 998.52	-11%	
Min Profit		56 723.22	17%	
Variance		9.1787E+08	-12%	
		CSP(0	CSP(0.01)	
Statistics		Value	Variation	
Ave. Profit		97 076.49	-4%	
Cost		6513.50	-19%	
Cash surplus		8486.50		
Ave. Profit + Cash		105562.99	-2%	
Max Profit		200 741.08	-15%	
Min Profit		57 649.54	19%	
		8.6929E+08	-17%	

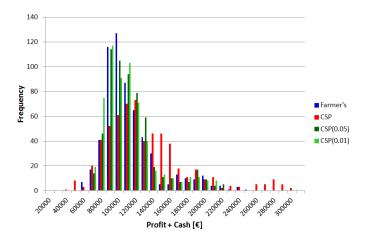
Profit Distributions Frequency

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model


Data and Variable Constraints CSP

CVaR-MILP model CVaR

 $\mathrm{CSP}(\beta$

Case study Description Results

Conclusions

CSP has a very large range of outcomes

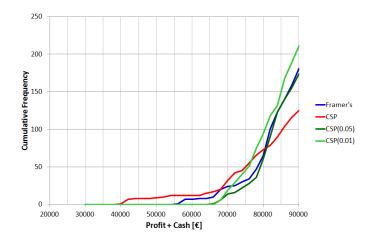
Filippi, Mansini, Stevanato

Profit Distributions Cumulative Frequency (zoom)

Outline

Introduction

Location and Crops Problem definition Literature


EV-MILP model

Data and Variabl Constraints CSP

CVaR-MILP model CVaR CSP(B)

Case study Description Results

Conclusions

■ CSP(β) preserves from very bad outcomes

Filippi, Mansini, Stevanato

Gannt Chart

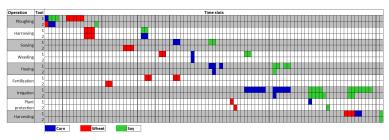
Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variable Constraints CSP


CVaR-MILP model

CVaR CSP(β

Case study Description Results

Conclusions

CSP(0.05) solution (not all time slots displayed):

Resources (tools, tractors) could be better exploited

Conclusions

Outline

Introduction

Location and Crops Problem definition Literature

EV-MILP model

Data and Variable Constraints CSP

CVaR-MILP model

CVaR $CSP(\beta)$

Case study Description Results

Conclusions

Crop mix problem modelled as a CVaR maximization problem with scheduling constraints

- validated on a real case
- more balanced solutions wrt an expected value maximization
- **Extensions** and future work:
 - evaluation of the effects of different resource configurations and the advantages of tool sharing
 - richer models, including decisions about the resources and their cost
 - deeper computational study