

Analysing and Integrating Risk Attitudes in Forest Management

Kyle Eyvindson and Annika Kangas

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Kyle Eyvindson

www.helsinki.fi/yliopisto 4.8.2014

1

- Managing forest resources according to a DM's attitudes towards risk
- Forest planning is a multiple criteria decision problem, taken under uncertainty.
- Risk attitudes are an additional set of criteria which should be included in the planning process.
- We propose a stochastic programming model to incorporate the DM's risk preferences.

Review on risk preferences

- Risk averse (red, $\lambda > 1$):
 - Willing to incur a penalty in the primary objective to mitigate deviations
- Risk neutral (black, $\lambda = 1$):
 - unwilling to incur a penalty to primary objective, however does still wants to minimize deviations
- Risk seeking (blue, $0 < \lambda < 1$):
 - Willing to incur substantial deviations to maximize primary objective

 $(c_{jki1})x_j$

primary objective

 $\max z =$

3

Incorporating uncertainty into the planning problem

- Formulating a stochastic programming problem can be done through a deterministic approximation of the uncertainties. (Birge and Louveaux 2011)
 - This requires the known (or estimated) distribution of the error.
 - A number of scenarios are developed to approximate the distribution. (King and Wallace 2012)
 - A need for balance:
 - too many scenarios tractability issues
 - too few scenarios problem representation issues

Forest planning problem

Age Class Distribution (years)

Wood Volume (m³/ha)

 A forest where the DM wishes to

- maximize first period income
 - subject to:
 - even flow constraints;
 - and an end inventory constraint.
- Small forest holding
 - 47.3 hectares, 41 stands

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Kyle Eyvindson

Scenario generation approach:

- For this case, only the uncertainty from the inventory data • was included.
 - A few assumptions were made:
 - 1. A recent inventory was conducted
 - 2. The inventory method was assumed to have an error which was normally distributed, mean zero and a standard deviation of 20% of the mean height and basal area.
- Using R, error was introduced into the inventory data, the ۲ process was repeated to generate 100 scenarios.
- Forest simulation was done using SIMO (Rasinmäki et al. 2009) ۲
 - Created a set of 528 schedules for the 41 stands (~13 schedules per • stand) for each scenario.

Formulations:

- Three formulations are developed: ۲
 - The Expected Value problem (EV)
 - The Simple Recourse problem (RP)
 - The Wait-and-See problem (WS)
- The EV problem ignores uncertainty, and to make it comparable, the Expected result of the EV problem (EEV) needs to be calculated.
- With these results, Value of Information calculations can be done.
 - Expected Value of Perfect Information (EVPI) = RP-WS
 - Value of the Stochastic Solution (VSS) = EEV-RP

EV problem:

(case where original inventory data assumed correct)

Objective Function :

[1]
$$\max EV = \sum_{j=1}^{J} \sum_{k=1}^{K_j} E(c_{jk1}) x_{jk} - \lambda \left(\sum_{t=1}^{T} (p_t d_t^-) + p_E d_E^- \right)$$

Subject to:

- J number of stands ٠
- K_i number of schedules for stand j •
- T period •
- c_{ikt} income ٠
- PV Present Value •
- x_{jk} treatment decision •
- p_t penalty parameter •
- λ risk parameter (included to the EV ٠ problem for comparative purposes)
- d_t, d_E deviations from target

Selection of Penalties:

- One option is the use of EV shadow prices:
 - A representation of the price the DM is willing to pay for even flow
 - The EV shadow prices could be viewed as an approximation of the penalties set by a risk neutral individual.

- I is the number of scenarios
- Rather than minimizing the expected weighted deviations, this formulation minimizes the sum of weighted negative deviations over all scenarios.
 - (i.e. Krzemienowski and Ogryczak 2005)

[12] WS =
$$\sum_{i=1}^{I} \frac{Z_i}{I}, \forall i = 1, ..., I$$

Objective Function (For all *i*=1,...,I, equations [13], [14], [15], and [16]):

[13]
$$\max z_i = \sum_{j=1}^J \sum_{k=1}^{K_j} c_{jki1} x_{jki} - \lambda \sum_{t=1}^T (p_t d_{it}) + p_E d_{iE}^-$$

Subject to:

$$\begin{bmatrix} 14 \end{bmatrix} \sum_{j=1}^{J} \sum_{k=1}^{K_j} c_{jkit} x_{jki} - \sum_{j=1}^{J} \sum_{k=1}^{K_j} c_{jki1} x_{jki} - d_{it}^+ + d_{it}^- = 0, \forall t = 2, ..., T$$

$$\begin{bmatrix} 15 \end{bmatrix} \sum_{j=1}^{J} \sum_{k=1}^{K_j} PV_{jkiT} x_{jki} - d_{iE}^+ + d_{iE}^- = \sum_{j=1}^{J} PV_{j0i}$$

$$\begin{bmatrix} 16 \end{bmatrix} \sum_{k=1}^{K_j} x_{jki} = 1, \forall j = 1, ..., J$$

and subject to eqs [10] and [11].

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI For each scenario an optimal set of schedules are selected.

Expected result of the EV problem:

(case where original inventory data assumed correct)

To calculate the EEV solution, let us denote \bar{x}_{ik} as the optimal solution to [1]: [17] $EEV = \sum_{i=1}^{J} \sum_{j=1}^{J} E(c_{jki1}) \bar{x}_{jk} - \frac{\lambda}{I} \sum_{i=1}^{I} \left(\sum_{j=1}^{I} (p_t \bar{d}_{it}) + p_E \bar{d}_{iE} \right)$ Subject to: $[18] \quad \bar{d}_{it}^{-} \begin{cases} 0 \ if \sum_{j=1}^{J} \sum_{k=1}^{K_j} c_{jki1} \bar{x}_{jk} < \sum_{j=1}^{J} \sum_{k=1}^{K_j} c_{jkit} \bar{x}_{jk}, i = 1, \dots, I, t = 2, \dots, T, \\ \sum_{i=1}^{J} \sum_{k=1}^{K_j} c_{jki1} \bar{x}_{jk} - \sum_{i=1}^{J} \sum_{k=1}^{K_j} c_{jkit} \bar{x}_{jk}, i = 1, \dots, I, t = 2, \dots, T, otherwise \end{cases}$ A vector of negative deviations $[19] \quad \bar{d}_{iE}^{-} \begin{cases} 0 \ if \sum_{j=1}^{J} PV_{j0i} < \sum_{j=1}^{J} \sum_{k=1}^{K_{j}} PV_{jkiT} \bar{x}_{jk}, i = 1, ..., I \\ \sum_{j=1}^{J} PV_{j0i} - \sum_{i=1}^{J} \sum_{k=1}^{K_{j}} PV_{jkiT} \bar{x}_{jk}, i = 1, ..., I, otherwise \end{cases}$ End volume constraint and subject to eqs [10] and [11].

UNIVERSITY OF HELSINKI Kyle Eyvindson

Results:

Highlighting the objective function components

Separating primary objective and soft constraints

100000 E(First period income) E(weighted sum of d) E(Sum of d) 75000 50000 25000 0 HE $\lambda = 1$ $\lambda = 1.05$ $\lambda = 6$ $\lambda = 1$ $\lambda = 1.05$ $\lambda = 6$ $\lambda = 1$ $\lambda = 6$ HE UN EEV RP WS

- Table separates the formulation into the components.
- For RP and WS problems, as λ increases,
 - Sum of negative deviations decrease,
 - 1st period expected income also decreases.
- Little change in the negative deviations for the EEV problem.
- Difference between $\lambda = 1$ and $\lambda = 1.05$
 - Penalty is only an approximation

Value of Information:

0.12 0.10 0.08 Percentage 0.06 0.04 0.02 VSS EVPI 0.00 2 3 5 1 6

λ

Value of Information

- Value of the Stochastic Solution
 - between 2.5 and 11.8%
 - λ = 1, slightly lower than λ = 1.05, due to approximation of penalties
 - The initial decrease is due 1st period income decreasing more rapidly than the weighted improvement of negative deviations
- Expected Value of Perfect Information
 - between 0.5 and 8%

Use of Shadow prices as penalties:

- Why the large spike in deviations?
 - The shadow prices for the RP problem do not precisely represent the 'risk neutral' weighting scheme
 - Same issue with the WS problem
 - If the shadow prices for each scenario were used, then for this example there would only be 2 solutions, when $\lambda = 1$, and when $\lambda > 1$
- Determining appropriate penalties is DM specific...

Conclusions: (Methodological)

- VOI highlights the importance of including uncertainty into the problem formulation.
- Attitudes towards risk is preferential information, and is dependent on the individual.
 - This research focused on risk neutral and risk averse, • risk seeking may be better served by more appropriate constraints

Conclusions:

(Why is this important for the DM?)

- Using the RP formulation allows the DM a tool for managing risk
- In this case, the risk could be considered the regret of not achieving the same result as the first period.
 - The λ allows the DM to indicate how important this risk is.
- Allows the development of a plan which integrates more of • the owners preferences.
- The RP solution is also simply more robust...

Future research

- Include further sources of error growth models, climate change...
- Different criteria this was a simple example, using economic goals, however it may be more useful in a more diverse multi-criteria setting.
 - This may make it easier to develop realistic risk models –
 i.e. how to balance the maximization of profit, with the risks of not reaching specific ecosystem service targets.
- Larger holdings.
- Multi-stage problems, with recourse.
 - add inventory measurements (i.e. Kangas et al. 2013)

References:

- Birge, J.R., and Louveaux, F. 2011. Introduction to stochastic programming. Second edition. Springer, New York. 499 p.
- Kangas, A., Hartikainen, M., and Miettinen, K. 2013. Simultaneous optimization of harvest schedule and measurement strategy. Scand. J. Forest Res.(ahead-of-print), 1-10. doi: 10.1080/02827581.2013.823237.
- King, A.J., and Wallace, S.W. 2012 Modeling with Stochastic Programming, Springer, New York
- Krzemienowski, A. & Ogryczak W. 2005. On extending the LP computable risk measures to account downside risk.
 Computational Optimization and Applications 32:133-160.
- Rasinmäki, J., Mäkinen, A., and Kalliovirta, J. 2009. SIMO: an adaptable simulation framework for multiscale forest resource data. Comput. Electron. Agric. 66(1): 76–84. doi:

10.1016/j.compag.2008.12.007.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI